You are here

This was a novel task based on previously published tasks (Garety et al., 1991; Huq et al., 1988) of reasoning bias in psychosis, but amended in the light of decision-making theory, according to which the amount of evidence sought is inversely proportional to the costs of information sampling. These costs include the high subjective cost of uncertainty and the cost to self-esteem or other factors. Participants were told that there are two lakes, each containing black and gold fish in two different ratios (60:40). The ratios were explicitly stated and displayed on the introductory slide. A series of fish was drawn from one of the lakes; all the previously “caught” fish were visible to reduce the working memory load. The participants were informed that fish were being “caught” randomly from either of the two lakes and then allowed to “swim away.” We used a pseudo-randomized order for each trial, which was the same for all participants. The lake from which the fish were drawn was also pseudo-randomized.

Participants could ask for a maximum of 20 fish to be shown. After each fish shown, they indicated whether the fish came from Lake G (mainly gold) or Lake B (mainly black) or asked to see another fish. The trial terminated when the subject chose the lake. There were four blocks, each with the 10 trials of the predetermined sequences to increase reliability. Block 1 was similar to the classical beads task and was included to provide a reference point. The only difference was that feedback (“correct” or “incorrect”) was provided after each trial. In Block 2, a win was assigned to a correct decision (100 points) and a loss (−100 points) to an incorrect decision. In Block 3, the cost of each extra fish after the first one was introduced (−5 points) was subtracted from the possible win or loss of 100 points for making a correct or incorrect decision, respectively. Block 4 was similar to Block 3, but the information sampling cost was incrementally increased: The first fish would cost 0 points, the second −5 points, the third −10 points, and so on. Thus a higher number of fish sampled led to more lost points. Subjects performed the task at their own pace. Whether Lake G or Lake B was correct was randomized. The task consisted of four blocks. Within each block were 10 trials of predetermined sequences of fish to increase reliability. All of the fish that were “caught” during one trial were visible on the screen to minimize the working memory load. Block order was not randomized because the task increased in complexity.

The main outcome variable was the number of fish sampled (DTD). Secondary outcomes were the accuracy of the decision, calculated according to Bayes’s theorem, based on the probability of the chosen lake given the color and number of fish seen (Everitt & Skrondal, 2010), and the dichotomous JTC variable, which is defined as making a decision after two or fewer pieces of information.

For more information, please see the linked article: Cost Evaluation During Decision-Making in Patients at Early Stages of Psychosis